
Digital Rights Management
in a 3G Mobile Phone and Beyond

Thomas S. Messerges
Motorola Labs

1301 E. Algonquin Road
Schaumburg, IL 60196

+1 (847) 576-5827

Tom.Messerges@motorola.com

Ezzat A. Dabbish
Motorola Labs

1301 E. Algonquin Road
Schaumburg, IL 60196

+1 (847) 576-5377

Ezzy.Dabbish@motorola.com

ABSTRACT
In this paper we examine how copyright protection of digital items
can be securely managed in a 3G mobile phone and other devices.
First, the basic concepts, strategies, and requirements for digital
rights management are reviewed. Next, a framework for protecting
digital content in the embedded environment of a mobile phone is
proposed and the elements in this system are defined. The means to
enforce security in this system are described and a novel “Family
Domain” approach to content management is introduced. Our new
approach uses key sharing to help alleviate bad user experiences that
are associated with some rights management systems. Examples
outlining the enrollment of devices and the acquisition, rendering,
and superdistribution of content are shown. Our proposed system is
not only applicable to a mobile phone system, but may also be
extended to other embedded systems, such as personal digital
assistants, set-top boxes, or personal computers.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – Access
controls; K.6.5 [Management of Computing and Information
Systems]: Security and Protection – Unauthorized access.

General Terms: Design, Security.

Keywords: Digital rights management, cryptography, security,
embedded system, mobile phone, digital content, copyright
protection, MPEG-21, key management, open mobile alliance.

1. INTRODUCTION
The mobile phone industry is on the verge of moving into its third
generation of products. The first generation offered analog
communication capabilities, the second generation featured digital
radio technologies, and now the third generation is poised to
embrace high-speed data and multimedia capabilities [27]. As these
new, multimedia-capable phones emerge, business opportunities for
the sale of valuable digital content, such as music, books, videos,
ringtones, and games, are attracting much interest. These business

opportunities are very lucrative to cellular operators, who are
anxious to recoup their huge investments for radio spectrum rights
and expensive new infrastructure equipment [12]. Although
predictions for revenues from digital content vary widely, one recent
study predicts that by 2006 the total revenues for digital music will
be about US $5.6b [19]. The problem lurking behind these potential
business opportunities, however, is that digital items can be perfectly
copied and shared at virtually no cost. In order to make these
business opportunities succeed, copyright protection using Digital
Rights Management (DRM) technology will be an essential
component in future mobile phones. However, people’s lives are not
centered on the use of their mobile phone. Consumers will more
likely accept a DRM system that does not restrict digital content use
to a single class of devices. Consumers wish to have access to their
content on any of their electronic devices – home entertainment
centers, car stereos, personal computers, etc. Therefore, a means to
enable content to be seamlessly shared beyond 3G mobile phones
and amongst multiple classes of devices is also needed.

In general, DRM technology encompasses a broad array of systems
and processes. Content providers need to define and organize rights,
content distributors need to package content and sell rights to
consumers, payment brokers need to reconcile billing, and client
devices (e.g., mobile phones) need to render content while enforcing
the rights. In this paper, we concentrate on the portion of DRM that
enforces the rights. We assume that content providers and
distributors wish to couple usage rules to a digital item. They also
want to ensure that mobile devices receiving valuable digital content
follow the associated usage rules in a secure manner (e.g., see [8]).
This means that usage rules and content will be protected with
cryptographic techniques. These techniques will ensure the
authenticity, integrity, and confidentiality of the content and the
usage rules. We will examine these security concepts in the context
of the embedded system of a mobile phone and then show how to
extend content sharing to a family domain of devices.

1.1 Background
Digital communication data rates on current mobile phones are
between 9.6 and 19.2 Kbps, depending on service [9]. This is far too
slow for the convenient transfer of most digital items. However, the
data rate for 3G mobile phones is expected to reach 144 Kbps,
384 Kbps, or 2 Mbps, depending on the mode of operation
(vehicular, pedestrian, or fixed location, respectively) [27]. With
these data rates, a complete MP3 song (about 4 MB of data) can be
downloaded to a phone in 16 to 222 seconds, depending on the
mode of operation. Digital items can also be transferred between
peers using messaging services, such as Multimedia Messaging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DRM’03, October 27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-786-9/03/0010…$5.00.

27

Service (MMS) [2], or streamed. Newer mobile phones will also be
equipped with personal area networking capabilities, such as
Bluetooth, which can manage data rates up to 723 Kbps [5]. Thus,
peer-to-peer sharing of digital items over short-range networks will
also be possible. At the same time, the number of mobile phones
with Internet connectivity (e.g., i-mode [10] or WAP [44]) is
growing so rapidly that soon there will be more mobile phones than
desktop computers connected to the Internet.

Since the technology is now in place for convenient access to digital
content in the wireless world, there is fear that losses from piracy
will mount. Currently, more than one out of every three software
applications is pirated. This translates into $12 billion lost due to
software piracy in 1999 [7]. Also, Napster [43] showed the world
how easy it is for people to share their MP3 music files. The small
size of compressed music files and the availability of higher-
bandwidth networks have made music particularly vulnerable to
illicit copying [22]. Estimated losses due to piracy in the music
industry vary widely. In 2001, predictions of losses ranged from
US $2.3b [17] to US $4.5b [16]. Figures published by the
Recording Industry Association of America (RIAA), show that
shipments of CDs to retail outlets have dropped from US $1.08b in
2000 to US $968.58m in 2001 [29]. According to this same article,
the RIAA blames online piracy for this decrease, stating, “23% of
surveyed music consumers say they are not buying more music
because they are downloading or copying their music for free.” To
top it off, there are also reports that the US $80b television industry
is also beginning to be “Napsterized” [14]. Some TV shows are now
available on the Internet.
Now that music, television shows, software, and even movies have
become so vulnerable to piracy, what can be done? Lawsuits were
successful at ending illicit music sharing on Napster [43]. However,
other file swapping tools such as Morpheus [39] and Gnutella [37],
which claim to be decentralized, may be harder to shut down. DRM
offers a possible technical solution. However, diverging approaches
and proprietary solutions are causing confusion in the marketplace
and are slowing down widespread adoption. To help clear up
confusion, some groups are beginning to look at standardizing DRM
technology. The Open Mobile Alliance (OMA) is developing DRM
standards for the mobile phone industry [40].
New mobile phones are capable of downloading Java games, they
can play digital music, and they can show videos. If these new
phones are also capable of DRM, then a much richer suite of digital
items can be available and both consumers and content providers
would benefit.

1.2 Paper Organization
This paper examines how copyright protection of digital items can
be securely managed on a 3G mobile-phone platform and beyond. In
section 2, the basic concepts, strategies, and requirements for DRM
on a mobile phone are reviewed. Next, in section 3, an overall
framework for protecting digital content in an embedded
environment is proposed and the essential data, hardware, and
software elements are defined. Security issues such as what makes
up a license, where is integrity and authenticity important, how
rights are enforced, and what protects the digital content are briefly
examined in section 4.
Sometimes, rights management schemes lead to bad user
experiences. So, in section 5, we introduce a novel “Family
Domain” approach to content management. This new approach uses

key sharing to help alleviate bad user experiences that have been
associated with some rights management systems. Then, in
section 6, we give examples that outline “Family Domain”
enrollment, and acquisition, rendering, and superdistribution of
content. In section 7, we conclude this paper with a vision of how
our system might be useful for devices other than mobile phones
and a look at future research opportunities.

2. DRM CONCEPTS AND STRATEGIES
In order to securely protect digital items, the content handling
portion of mobile phone needs to possess the features of a trusted
system, as defined by Stefik [42]. The phone will be relied upon to
do certain things, such as not copy a digital item unless authorized
to do so, not render content if it does not possess the rights, or pay a
fee if that is what is required. In this paper, we start off by
investigating how a mobile phone can be made into a trusted system
and we outline the requirements for the various components that
comprise this trusted system.
Figure 1 shows that, in the case of persistent content (i.e., content
that is stored on the device and not streamed), the inputs to the
trusted DRM system can be license and protected content files. The
protected content file contains encrypted content and the license
contains metadata and usage rules for the content. The content is
encrypted to prevent it from being used by untrusted systems and the
license is digitally signed to enable its integrity and authenticity to
be verified. The license also contains a cryptographic hash of the
content and a means to decrypt the content. For example, the key
needed to decrypt the content would be encrypted with a particular
device’s public key and kept in the license. Only the device
possessing the correct private key, which would not be known
outside of the device, would be able to decrypt the content
encryption key and gain access to the content. Finally, it is important
that the signer of the license is an authority that is trusted or whose
trust can be verified by the phone’s DRM system.

License File

- Metadata
- Rules
- Encrypted Key
- Hash
- Signature

Rendering
Software

DRM
Services

Trusted DRM System

Output
Content

Protected Content File

Encrypted
Content

Figure 1. DRM is enforced using a protected content file and a
license file. The license file will contain the usage rules, which
are signed by a trusted authority and the protected content file
will contain the encrypted content, which can be rendered only
by devices possessing the corresponding license file.

When content is rendered, the trusted rendering software will
present the protected content and corresponding license to the DRM
services software. The DRM services will verify the signature of the

28

license, verify the hash of the content, decrypt the content, and then
send the decrypted content back to the rendering software. The
rendering software will then be able to play the music, show the
video, or run the game, depending on the type of content. The
presence of DRM will be transparent to users, except for cases when
a user tries to render content without a proper license.

2.1 Existing DRM Systems
In 1999, the Secure Digital Music Initiative (SDMI), comprised of
record companies, device manufacturers, and DRM technology
vendors, completed a specification for portable devices [34]. This
specification set forth the high-level requirements that a portable
device should follow for handling digital content, but it was not
detailed enough to provide a complete solution. The progress on
SDMI was eventually stopped, but progress in other areas continues.
For example, PressPlay, MusicNet, and Apple Computer’s iTunes all
offer on-line access to copy-protected digital music. Also, the US
Congress has held hearings on digital content protection and
legislation requiring copy-protection hardware has been proposed.
However, it is still too early to see where this is heading.
Copyright protection technology, such as investigated by SDMI,
does not provide a complete DRM solution so other issues also need
to be considered. For example, rather than rendering the content, a
device may also be used to stream, copy, or backup content to or
from another device. Also, payment mechanisms for purchasing
content and building a network of trust need to be considered. One
system that works out some of these details is the Keitaide-Music
system [38]. This system offers a secure system to deliver music to
mobile phones and relies on a trusted memory card to protect the
content.
The Motion Pictures Expert Group (MPEG) is considering the topic
of DRM in the MPEG-21 standard. Contributors to the MPEG-21
standard are working to define system requirements and add DRM
hooks. These hooks provide a standard framework for marking up
protected content and describing how it should be handled. MPEG-
21 will also include methods for expressing rights. Currently,
MPEG-21 will use XrML [41] as its rights expression language, but
further experiments are still in the works.
There are many companies that provide proprietary DRM
technology (e.g., Microsoft, LockStream, InterTrust). Some of these
companies also offer solutions for mobile phone systems. While
these systems offer incompatible and different solutions, they must
all rely on the foundation of a trusted system to ensure security. In
this paper we try to pinpoint the essential architectural elements that
are common amongst these solutions.

2.2 Open Mobile Alliance DRM
The Open Mobile Alliance, which works to define industry-wide
specifications for applications that operate over wireless
communication networks, has already released their version 1 DRM
specification [40]. The scope of their specification is to “enable the
controlled consumption of digital media objects by allowing content
providers to express usage rights, e.g., the ability to preview DRM
content, to prevent downloaded DRM content from being illegally
forwarded (copied) to other users, and to enable superdistribution of
DRM content”. One goal is to devise a consumer-friendly DRM
standard that maximizes interoperability, while minimizing
complexity. The OMA specification gives requirements that affect
the user experience, the user equipment (i.e., the phone), the usage
rules, the content format, security, and privacy. In order to ensure a

consumer-friendly solution, OMA advocates that content files can be
distributed to other devices, but that licenses to use this content must
be obtained from a server called the rights issuer. Later in this paper,
we will show how our “Family Domain” approach can be used to
enable content distribution to all devices owned by a consumer,
without the need to acquire a new license for each transfer.

3. OUR DRM SYSTEM
Now that the basic requirements and background material have been
reviewed, it is time to look at our proposed DRM system. The first
step is to decide how to interface the DRM and security software
with the phone’s Operating System (OS) and applications. There are
a number of possibilities. For example, in looking at a PC
environment, Schneck [33] notes two approaches. His first
suggestion is to replace the I/O elements of the OS with modules
that contain access control mechanisms. These new modules would
monitor all requests for I/O operations and would inform a user if a
proper license for a digital item were not available. Schneck ’s other
approach, which does not require OS modifications, is to use a
“hyperadvisor” that is situated between the OS and the hardware.
When an application requests access to a protected file (protected
files are identified with a special header), the hyperadvisor would
invoke the DRM system and special software and hardware would
complete the operation. Our view, shown in Figure 2, is slightly
different than either of these approaches. Rather than replacing the
I/O elements of the OS or adding a hyperadvisor, we propose that
the OS be extended to support DRM functionality.

Process
Manager

Hardware

Generic OS

Memory
Manager

File
Manager

Network
Manager Security Agents

DRM
Manager

Trusted
Application

Agents

Applications (e.g., music or video player, game)

Security Hardware

DRM/Security
Extensions

System Services API Extended Serv ices API

Tr
us

te
d

Sy
st

em

Figure 2. A generic operating system is extended with DRM
and security capabilities by adding a DRM manager, trusted
application agents, and security agents and hardware. The OS
with extensions comprise a trusted system.

In our approach, only applications that access DRM-protected
content need to be aware of the new DRM extensions. For example,
when an application tries to access a particular file, a header may
indicate that this file is protected. In which case, the application can
use the DRM extensions to open the file and render the data. The
application will access these extended system services through an
Application Programming Interface (API) that is augmented to
provide additional DRM-related services. Figure 2 shows that these
DRM extensions include a DRM manager, security hardware, and a
suite of trusted application and security agents. These extensions

29

will run in the same “privileged mode” as the OS and will have
access to system data and resources. Applications, such as a music
or video player’s Graphical User Interfaces (GUIs), will run in “user
mode” and have limited access to system data and resources. At the
GUI level, these applications will not need to worry about DRM
content other than to report on the status of the license. Lower-level
components of the applications will invoke DRM extensions to
process protected content, but as the content is decrypted and
unprotected it will move under control of privileged-mode
extensions. Some details of the blocks that implement these
privileged-mode extensions are now examined.

3.1 DRM Manager
The DRM manager is responsible for the core DRM functions. It
works with security agents to authenticate licenses and content,
parse and enforce usage rules, access a secure DRM database, and
provide decrypted content to a trusted application agent.

3.1.1 Authenticate Licenses and Content
Before an application can use protected digital content, it needs to
use the DRM manager to verify the integrity and authenticity of the
corresponding license file. This check will typically require that the
cryptographic hash of the license file be computed and that a digital
signature be verified. The DRM manager will need to parse the
license and perform the appropriate checks.
The license may be cryptographically linked to the content via a hash
value. In this case, a hash of the content will need to be computed and
verified. The purpose of this hash is to bind the content to the license,
thus it helps prevent a license for one digital item from being used for
another digital item. Sometimes, in a low-end embedded system such
as a mobile phone, the digital item may be too large to calculate its
entire hash value at the time the license is checked. In this case, we
propose that the hash value for the content could be computed in a
piecemeal fashion. Small portions would be hashed and the hash
results of each portion would collectively form a “hash table”. Only
the hash table (or a hash of the hash table) needs to be stored in the
license file and initially verified (e.g., via the signature of the license
file). The hash values in the hash table could be verified incrementally
as each portion of the content is rendered. Thus, if licenses and content
are packaged to include a hash table, hash verification can be
distributed, making the processing task more suitable for an embedded
processor (e.g., in a mobile phone).
In some situations, the signature of the license may need to be
verified using a public key whose trustworthiness also needs to be
checked. In this case, the DRM manager will need to verify an
additional certificate or a chain of certificates that are contained in
the license. The DRM manager will enlist the aid of security agents
when performing this and all other cryptographic operations. The
result of all these checks will determine whether the license and
content files originate from valid sources and whether they have
been modified. Upon completion of all these operations, the DRM
manager will indicate to the application the results.

3.1.2 Enforce Rights
If the license and content have been successfully checked, an
application can ask the DRM manager to perform an action on the
content. For example, an application may ask the DRM manager to
“play” the song, “display” the video, or “copy” the picture. Actions
can be associated with three fundamental types of rights: render
rights, transport rights, and derivative work rights [31]. The DRM

manager should be capable of checking all of these rights and
preparing for the appropriate action. Sometimes the license will
stipulate an additional event for performing an action, such as a
payment needs to be made or a play count needs to be decremented.
The DRM manager will need to use a secure database to track these
events.
Rights to an action are typically assigned to a specific entity (i.e.,
device). So, to enforce the usage rules, a DRM manager needs to
have access to its device’s credentials. A key/certificate manager,
which is one of the security agents, is responsible for handling these
credentials (e.g., keys, certificates, IDs). Applications that initiate
requests for action will invoke the help of the key/certificate
manager to obtain the appropriate credentials. These credentials, or a
link to them, will be forwarded to the DRM manager.
Once the DRM manager has obtained the proper credentials,
checked the rights, and approved a particular action, the digital item
can now be decrypted and routed to the appropriate application
agent.

3.1.3 Decrypt Content
Since a top-level application is not part of the trusted OS layer, it
will not normally be allowed direct access to the decrypted content
(one exception might be when the license indicates that it is fine to
release the decrypted content). In our system, the DRM manager
routes the decrypted content directly to a trusted application agent
that is relied upon to perform the desired action (e.g., decode and
play the song or video). The top-level application can control the
decryption process and the operation of the action via system calls,
but it will not have direct access to the decrypted content. Instead,
the top-level application will act as the user interface and controller,
while low-level trusted agents actually handle the data and are
responsible for rendering the content.

3.1.4 DRM Manager Example
Figure 3 summarizes the three responsibilities of the DRM manager
and shows the authentication, rules enforcement, and decryption
steps that an application needs to perform to render content.

1. Authenticate license
 and content

Top-Level
Application Steps

Trusted
DRM Manager

Trusted
Agent

Pass

Pass

Enforce Rules

Decrypt

2. Use credentials and
 request an action
 (e.g., play, copy)

3. Control the action

Secure
Database

Event

Authenticate

Figure 3. A top-level application uses the DRM manager to
authenticate the license and content, and request and control an
action (e.g., play, copy, display). The DRM manager ensures that
the rules are enforced and possibly updates a secure database
with an event, such as decrementing a count or logging a
payment.

30

3.2 Trusted Application Agents
Like the DRM manager, the trusted application agents (as seen in
Figure 2) are part of the extended OS. These agents support the
ability of applications to access and manipulate decrypted content.
They are referred to as “trusted” because they are part of the
privileged OS layer. As with all the trusted software, we assume that
some means is used to verify their integrity and authenticity and
guard against hacker’s attempts to make modifications.

The application agents can be organized according to the type of
action they perform. Thus, there are rendering agents, transport
agents, and derivative work agents.

3.2.1 Rendering Agents
Trusted rendering agents provide applications the ability to render
DRM-protected content (e.g., a music player, a picture viewer, a
video player, a book reader, a ringtone generator, an application
loader). These agents provide the low-level drivers that convert the
digital data into a format that can be consumed by a user. For
example, a music player agent would take MP3 data and play it on a
phone’s headphones, a video player would take an MPEG4 stream
and display it on the phone’s screen, and an application loader
would load and invoke a DRM-protected application, such as a Java
game. The common feature amongst all of these agents is that they
are trusted to properly handle decrypted digital content.
In order to allow for a richer user experience, the operation of some
rendering agents, such as a music player, must be tightly coupled to the
top-level application. The top-level application will provide the
Graphical User Interface (GUI) to the rendering agents while the
agents will merely provide low-level decoding operations and device-
driver services. As such, the API between the agent and the top-level
application needs to be cleverly designed to enable flexibility.
In our system, the execution of a DRM-protected software
application is also categorized as a rendering operation. An agent,
referred to as the application loader, is responsible for enforcing
usage rules prior to executing a previously installed application.
This loader agent makes sure that the rights and privileges assigned
to an application are enforced while the application is running. In
the case of Java application, the loader agent may need to configure
the MIDP-NG [18] privileges, or set the MExE [1] domain to
manufacturer, operator, third-party, or untrusted.

3.2.2 Transport Agents
Transport agents provide services that move content from one
location to another (e.g., email attachments, messaging services,
streaming, copying, loaning, device synchronization, or
superdistribution). When transferring protected content, the DRM
manager is first used to ensure that the usage rules are enforced.
Next, a transport agent is invoked to start the transfer. The transfer
might involve the establishment of a Secure Authenticated Channel
(SAC) with the receiving device. In this case, the transport agent
would also enlist a security agent to complete a protocol, such as
Transport Layer Security (TLS) or Wireless TLS (WTLS).
Like the application agents, transport agents may need to handle
decrypted content. Thus, transport agents also need to be trusted. As
an example, consider that some newer mobile phones may have
built-in digital music players where the audio signal is transmitted to
headphones using a Bluetooth connection. In this situation, a trusted
transport agent would be relied upon to establish a secure Bluetooth
link between the headphones and the phone. The transport agent

would receive the decoded and decrypted audio signal from a
trusted MP3 decoder application agent. Then, the trusted transport
agent would encrypt the audio signal and route it to the Bluetooth
hardware, which would finally transmit the encrypted data to the
headphones. The transport agents on the headphones and in the
phone need to be trusted by content providers to properly handle
decrypted audio data.

3.2.3 Derivative Work Agents
Derivative work agents are used to extract and transform protected
content into a different form. For example, a copy of a digital item
might have different rights than the original. When duplicating a
digital item, a derivative work agent is invoked to make sure the
copy’s license is updated appropriately. Alternatively, this agent
might contact a server to obtain a new license for the copy.
Another example of using a derivative work agent is in the
installation of DRM-protected software or data. To ensure fast
execution, installed software and data is decrypted; however, this
makes it vulnerable to copying. In order to ensure continued
enforcement of rights, a derivative work agent is used to place the
decrypted data into an access-controlled file system. A security agent
maintains the access-controlled files and allows only certain trusted
agents access privileges.
Examples of data and applications that might be installed by a
mobile phone include: software patches, games, or ringtones. Once
an application or data is installed, other trusted agents can use it. A
ringtone generator can play installed ringtones and a Java
application loader can load Java games for playing. It may also be
necessary to retain the original license for installed data or
applications. An application or data may need to be uninstalled or a
user may want to manipulate the data in some way.

3.2.4 Trusted Application Agent Example
Figure 4 shows a summary of how trusted application agents are
used to install and play a new ringtone. The first step is to use a
derivative work agent to decrypt and load the new ringtone. The
user wants to hear the ringtone over his headphones. Thus, the next
step is to use a secure link agent for establishing communications
between the headphones and the phone. Lastly, a trusted ringtone
player agent is used to access and play the ringtone.

1. Use a derivative
work agent to
decrypt and load a
new ringtone

Top-Level
Application Steps

Trusted Application
Agents

Audio

Installer

Secure
Link

Ringtone
Player

2. Use a transport
agent to link phone
to headphones

Access-
Controlled

Files

Decrypted
Ringtone

3. Use a rendering
agent to play the
ringtone

Figure 4. A top-level application uses trusted application
agents to install a new ringtone. The ringtone is played over
headphones by using other trusted agents to establish a secure
link and play the ringtone.

31

3.3 Security Agents
The security agents handle the security-related functions that are
commonly needed in all DRM systems. These functions include:
secure memory and file management, cryptographic operations, and
key management. The security agents may also work closely with
available security hardware. Very often, embedded hardware can
greatly enhance the security of a DRM system.

3.3.1 Memory and File Management
A DRM system needs to ensure that access to memory and files can
be controlled. For example, we want to make sure that an installed
ringtone cannot be accessed by just any application. It should only
be available to the ringtone player, which is trusted not to make
copies of the data.

There are at least three security functions related to memory and file
management. These functions include the maintenance and
operation of 1.) an access-controlled file system, 2.) a secure
memory system, and 3.) a memory separation system.

The access-controlled file system is important for a number of
reasons. One function it provides is the storage of digital content
that is no longer encrypted. Our previous case of a Java game
provides a good example of why such access control is needed. It
would be very inefficient to always keep a DRM-protected
application, such as the Java game, in an encrypted state. Therefore,
there is a need to decrypt an application, but still store it securely.
This is where the access-controlled file system can be used. A
protected application can be decrypted and safely kept in files that
only trusted agents can access.
Another use for the access-controlled file system is to store a secure
database. This database can be used to track all events that the DRM
system needs to log. For instance, usage rules may state that a
particular song can only be played once. Thus, when a rendering
agent plays this song, it will log a “play” event into the database.
Similarly, encrypted private keys and data may be stored in this
database. A security agent would be responsible for ensuring the
secrecy and integrity of the secure database entries. Only trusted
agents will be allowed to access this data.

If not already available, an existing file system could be augmented
to include access-control functionality. Some requirements for the
access-controlled file system include:

• Files are assigned ownership attributes that specify which
trusted agents can access the files.

• Tampering of the ownership attributes can be detected.

• Files are optionally encrypted.

• Files that are not encrypted must be physically located within
the phone.

One already implemented example of an access-controlled file
system is Sony’s memory stick system [4]. In this device, the
responsibility for enforcing access control is placed on a special
hardware module that resides on the memory stick. Smartcards, and,
in the case of some mobile phones, Wireless Identity Modules
(WIM), may also provide an access-controlled file system. In our
system, we believe that a trusted security agent can work with the
phone’s onboard memory to maintain access control. However,
memory separation between tasks needs to be maintained.

To guarantee task separation there is a need for a hardware-
supported memory separation system. We want to ensure that when
a trusted operation is running, untrusted operations cannot
eavesdrop on the memory being used. In our system, a memory
separation manager is responsible for maintaining the separation of
tasks. When a task is run, this memory manager can configure a
hardware monitor to define which memory is available to the task.
In this way, we can ensure that tasks stay within their assigned
memory areas and that they do not maliciously interfere with trusted
operations.

Lastly, in any DRM system there is critical data that should never be
allowed to leak out of the system. A secure memory system protects
this data. For example, if a phone’s private keys were to leak out, a
hacker might be able to compromise the security and extract
decrypted content. For high-security systems, physically probing the
bus lines or pins of hardware components inside the phone is one
avenue of attack that needs to be blocked. This can be accomplished
using a secure memory that resides on the same IC as the processor.
Unlike the secure database, the secure memory would only
temporarily hold data, such as decrypted keys that are being used for
a DRM operation. The volatile secure memory is linked to tamper
detection circuitry. If suspicious events, such as attempts to enter
debug mode, are detected, this memory is immediately cleared.

3.3.2 Cryptographic Operations
The security agents also provide access to symmetric and public-key
cryptographic functions. Protected content is encrypted using a
symmetric-key algorithm, such as AES [3], and the binding between
content and licenses is done with a hash algorithm, such as SHA-
1 [35]. Public-key operations, such as RSA [30] or ECC [20], are
used for content key decryption, signature verification, signature
generation, and for certain secure networking protocols (e.g., TLS or
WTLS).

Recall that prior to rendering a digital item, the signature of a license
needs to be checked and the content decryption key, which is in the
license, needs to be decrypted. These operations, plus the hash of the
content, may need to be completed in a short amount of time.
Figure 5 gives some typical execution times for processing DRM-
protected content using software implementations of RSA, ECC,
SHA-1, and AES on a 16 MHz ARM7 microprocessor. A significant
point of Figure 5 is that ECC is much better suited (20 time faster)
than RSA for decrypting content keys. For software
implementations, the optimal performance is achieved if ECC is
used to decrypt the content key, but RSA is used to verify the
signature of a license. When hardware accelerators perform these
cryptographic operations, the difference between RSA and ECC may
be less of an issue.

32

Operation

Hash of a license (5KByte)

Verify license signature

Decrypt content key

Decrypt content (2 Kbyte)

Time

SHA1: 3 ms

RSA(1): 100 ms
ECC(2): 150 ms

RSA(1): 1,800 ms
ECC(2): 90 ms

AES(3): 1.6 ms
(1) 1024-bit RSA with CRT (2) WTLS Curve 3 (3) 128-bit key

Figure 5. Typical execution times for processing DRM-
protected content using software implementations of RSA, ECC,
SHA-1, and AES on a 16 MHz ARM7 microprocessor. The
above data shows that if hardware is not available, ECC is much
better suited for wrapping content keys.

3.3.3 Key/certificate Manager
The Key/Certificate Manager (KCM) is a software module
responsible for securely handling a database of the phone’s
credentials, which include private keys, public keys, certificates, and
identification numbers. Private keys need to be kept secret,
certificates need to be verified, and the links between public and
private keys need to be maintained. This software provides these and
other services to the rest of the DRM system.

As an example, the phone will contain a root certificate, upon which
all trust can be verified. The verification of a signature may require
the traversal of a certificate chain, which ends at this root certificate.
It is expected that certificate chains be kept small (perhaps two or
less) for mobile systems. The KCM is responsible for parsing and
verifying the appropriate certificates.

As another example, the KCM needs to control the use of the
phone’s private keys. These keys should be usable only by OS
components that are trusted. Also, ideally these keys will be
decrypted only into the secure memory, thus they can be easily
cleared if tampering is detected.

When the DRM system is configured, new keys or certificates may
need to be installed. The KCM also handles this function. For
example, when a device is configured to work with a particular
DRM system, a new private key and public-key certificate may need
to be installed. There are also cases when a key or certificate needs
to be deleted. For example, when a subscription service expires, the
corresponding private key and certificate need to be removed. Also,
when a certificate is revoked or updated, an old certificate may need
to be removed.

3.4 DRM Credentials
A DRM system needs to maintain keys and certificates that can be
used to gain access to protected content and also establish trust with
other entities. Unlike the PC environment, a mobile phone can
provide more reliable information regarding the credentials of a
device and its user. For example, in GSM phones, the International
Mobile Equipment Identification (IMEI) number identifies the
device and is now required to be unchangeable. Also, the
International Mobile Subscriber Identity (IMSI) number provides
information that is bound to a subscriber’s service account [13].

Hartung and Ramme point out that if information, such as the IMEI
or the IMSI (which are present in the network control layer of a
mobile system), is made available to the application layer, then a
more secure DRM system can result [15].

We now describe six elements, shown in Figure 6, that comprise the
credentials of our DRM system: a Serial Number (SN), a Model
Number (MN), a unit private key (KuPri), a unit
certificate (UnitCert), a DRM private key (KdPri), and a DRM
certificate (DRMCert). Trusted security agents (e.g., the KCM) are
used to manage these elements and ensure that the private key
remains secret. In addition, the DRM system will also need a root
key (or keys) that is used to check the authenticity and integrity of
the credentials of other devices, servers, or licenses.

Permanent
Identifiers

Used by others to
authenticate the phone

Used to encrypt and
decrypt content keys

Phone

Serial Number

Model Number

KuPri

UnitCert

KdPri

DRMCert

Root Key Used for authenticating,
licenses, servers, etc.

In
st

al
le

d
by

m

an
uf

ac
tu

re
r

In
st

al
le

d
by

3r

d-
pa

rty

Figure 6. The phone’s credentials consist of permanent
identifiers, a root key, private/public unit keys, and
private/public DRM keys. The unit keys are used to authenticate
the phone and the DRM keys are used to assign content to a
particular phone.

3.4.1 Serial and Model Numbers
The SN, which could be the same as the IMEI, is an unchangeable
number that unambiguously identifies the phone. This number is
useful for binding content to a phone. For example, a license might
stipulate that only a device with a certain SN has rights to render a
digital item. In order to enforce this license, the DRM manager
would need to make sure its SN matches the SN in the license.

The MN is a number that unambiguously identifies the hardware
and software version of a phone. It can be used by the DRM
infrastructure, such as content providers, to indicate the phone’s
capabilities. As different phones with different DRM and content
rendering capabilities are developed, it will be important for the
content providers to know how to package the digital content for
particular phones. The MN can also indicate security capabilities,
such as whether the phone has hardware, rather than software,
support for security. Some content providers may wish to sell
valuable content to only phone models that offer hardware-backed
security assurance.

3.4.2 Private Keys and Certificates
The phone’s KuPri is the phone’s unique private key and the
UnitCert is a certificate that certifies the corresponding public

33

key (KuPub). We propose that KuPri and UnitCert should be used
for establishing secure-authenticated channels to a phone, such as
needed when a phone receives streamed content, is sent DRM-
protected content, or is given new DRM keys. A phone’s KuPri and
UnitCert would form the foundation of trust for a DRM-enabled
phone and would need to be installed in a secure manner, such as by
the phone’s manufacturer.

The phone’s KdPri is also a unique private key and DRMCert is also
a certificate that certifies the corresponding public key (KdPub).
Unlike KuPri and UnitCert, the DRM key and certificate are meant
to be used exclusively when assigning content to a device. For
example, a digital item might be encrypted with a content key CEK.
The KdPub key can be used to encrypt CEK. Thus, only the device
possessing the corresponding KdPri would be able to decrypt CEK
and, in turn, decrypt the digital item. In this manner, content can be
assigned to a specific device.

One way to improve the secure usage of a device’s private keys,
KdPri and KuPri, is to bind the use of these keys to the
unchangeable serial number of the phone. For example, this serial
number can be included in the certificates, UnitCert and DRMCert.
The phone would securely boot, validate its trusted software, and
then use the trusted software to confirm that the serial number in the
certificates matches its own serial number. Next, it would verify that
the public key in the certificate is properly paired with the private
key. This scheme helps prevent problems if an attacker is able to
load a private key from one phone into another. The reason for the
improved security is that private keys and certificates are loaded via
secure software means, but that the serial number would be based on
a hardware mechanism that is harder to undermine.

3.4.3 Short-Lived Certificates
In 1995, Macq and Quisquater described a system where a trusted
authority grants “entitlements” to enforce access to a digital TV
system [23]. They recommend that, for more robust security, an
entitlement should be valid for only a limited time. In our system,
the certificates act as the entitlement. A device’s certificates can have
expiration dates that need to be authenticated prior to allowing
access to critical DRM operations. To revoke a device’s access, no
action is required, since without the active renewal of these
certificates, the device would eventually stop working on its own.
This situation is preferable to active revocation, because of the
possibility that a revocation message to a device could potentially be
blocked. Of course, a trusted source for time and date information is
also needed if short-lived certificates are used.

4. SECURITY ISSUES
Now that our system has been fully described, we can start to
examine how the components work together to provide a secure
DRM solution. In this section we briefly examine some security
issues such as what makes up a license, where is integrity and
authenticity important, how rights are enforced, and what protects
the digital content.

4.1 License
Rights are assigned to a digital item using a license, which is an
unambiguous, machine-readable document that describes how a
piece of content may be used. There are many possible license
formats (e.g., XrML [41] or ODRL [36]), but there are only four
essential items that really need to be in a license. These items
include, a value that links the license to the digital item, the rights

allowed for that digital item, a means to decrypt the digital item, and
a signature of the license.

4.2 Integrity and Authenticity
There are many places where integrity and authenticity are
important. The DRM manager needs to ensure the authenticity and
integrity of the license; application agents need to ensure the
authenticity and integrity of other trusted devices (e.g., the
Bluetooth headphones); and a phone needs to prove its authenticity
to other devices and the DRM infrastructure (e.g., content
providers).

We assume that authenticity and integrity can be established either
through a Public-Key Infrastructure (PKI) or a shared secret. For
example, a phone verifies the signature of a license using a root key
that is securely embedded into its hardware. However, Bluetooth
headphones and a phone might share a secret key that is
preprogrammed into each device or securely established. Strong and
publicly scrutinized cryptographic algorithms, such as RSA [30] or
ECC [20] for signatures, AES [3] for symmetric encryption, and
SHA-1 [35] for hashing, will also help to ensure that the DRM
system remain secure. The phone will need to verify signatures
(public-key encryption) and decrypt content keys (public-key
decryption).

Content providers need to trust that the DRM system in a phone will
keep all private or shared symmetric keys secret – even from the
phone’s owner. If a private key is not secret, then there is a potential
rogue phone problem. That is, someone could place an authentic
private key into a rogue phone. Content providers would not be able
to distinguish this rogue phone from a real phone, and might
inadvertently sell it content. This is a problem because a rogue
phone does not necessarily enforce any usage rules for content.

4.3 Rights Enforcement
It is the responsibility of the DRM manager to enforce the usage
rules. The DRM manager will need to parse the license file and
recognize and process the different rights expressions. If the DRM
manager finds a conflicting expression or one that it cannot
understand, then it must fail in a safe manner. One way to try and
fool the DRM manager might be to supply older or newer versions
of licenses. Thus, the DRM manager needs to be able to recognize
the version of the license file. It should be designed to be backwards
compatible, so that old licenses can be properly interpreted.

4.4 Content Protection
Content is protected with encryption up until the time it is rendered
or installed into the access-controlled file system. Encrypted content
can be streamed to a phone from a remote server or it can be stored
locally in a memory device. In either case, the content will be
decrypted and routed to the appropriate rendering hardware by
trusted agents. These agents are trusted not to leak or copy the
decrypted content.

Before a trusted agent can start decrypting content, it needs to obtain
the decryption key CEK. If the content is stored locally, a version of
CEK encrypted with KdPub will be in the license. The trusted agent
will need to use its KdPri to decrypt CEK. If the content is streamed,
CEK will be the session key that is negotiated with the server during
the establishment of a SAC. This SAC is established by using the
phone’s UnitCert and KuPri.

34

4.5 Privacy Issues
There are two privacy issues that need to be considered in a DRM
system:

• User information used to create a content license must not be
disclosed without the explicit consent of the end user.

• The user’s identity must not be disclosed to a content provider
and/or to other parties without the explicit consent of the end
user.

Ideally, a DRM system should not put at risk a user’s private
information. For example, in designing a DRM system, a user’s
privacy might be enhanced if transaction is tied to a person’s device
rather than their identity. Feigenbaum et al. [11] and Kravitz et al.
[21] take in-depth looks at DRM privacy issues.

5. FAMILY DOMAIN
A number of proposed DRM schemes, such SDMI, PressPlay and
MusicNet, have received some poor reviews from the
public [24],[26]. In general, consumers are resistant to DRM
systems and need to be assured that their rights will also be
protected. One privilege that consumers wish to protect is the right
to use their content on any of their devices – not locked to one
particular device. Some proposed DRM systems require a public-
key infrastructure and a centralized locker approach to give users
access to content anytime, anywhere (e.g., [32]). However,
approaches like these may not be suitable for devices such as mobile
phones or other multimedia equipment that, unlike personal
computers, may not have permanent networking capabilities.

In order to preserve a consumer’s right to move content to all of his
devices, we propose a new concept of “Family Domain” content
management. In our scheme, the consumer decides which devices
belong to his domain (e.g., all devices he and his family own) and a
trusted server, which we refer to as a Domain Authority (DA),
installs a common DRM private key in each of these devices. In
effect, the DRM private key becomes a domain private key that
enables access to all the content in a domain. A secure perimeter is
established. Devices inside the domain have full access to the
content and devices outside the domain do not. Our scheme is also
suitable for devices that have limited or no networking capabilities.
A device needs to only register with a DA once and this be
registration can be performed via a proxy device that acts as a
temporary gateway to the network.

Some DRM schemes, such as SDMI, restrict access to content based
upon a check-in/check-out policy in which security restrictions are
encountered every time content is loaded into or out of a device. In
our domain-based system, users contend with security only when a
new device is added to or removed from a domain. Thus, we believe
that a domain-based DRM system will gain wider consumer
acceptance.

5.1 Device Configuration
In our “Family Domain” system, portable devices are assigned to a
particular domain by registering with the DA. When a device
registers into a domain, we say the device has “joined” the domain.
When a device no longer wants to be part of a domain, it can
“leave” the domain by canceling its registration. The DA enforces
registration policies, such as limiting the number of devices in a
domain and limiting the number of times a device can join and leave
a domain. The DA can also detect potential fraud by tracking which

devices are joining and leaving the domains. Excessive activity may
indicate that a device is trying to abuse the system. Such devices can
then be prohibited from further registration activities.

The ability to add or removed devices from one’s domain can be
controlled using passwords. Users could potentially share family
domain passwords and add non-family members to a domain.
However, if this concerns content providers, it might be possible to
tie domains to service accounts or to tie entry into a domain to a
user’s private information or an ability to spend money. As an
example, when we investigated the procedure for registering a
Liquid Audio player, a user was offered two options: a full or a fast-
track passport. A fast-track passport enables DRM-protected music
to play on a specific PC while a full passport allows music to be
shared on any PC that has a copy of the full passport. To limit the
sharing of full passports, which could lead to abuse, Liquid Audio
requires a credit card number be used when obtaining the full
passport. The passport is associated with the credit card number, so
users will be unlikely to share their passports. To make this system
more acceptable to the users, this linking of access control to a
payment mechanism might be offered as a convenience, such as a
way to enable one-click shopping.

Previous studies have considered issues such as key management for
multicast, where a group key is shared amongst a group of users
who can leave or join the group. Efficient methods to manage such a
scheme are available [28]. The intent of these schemes is to prevent
leaving members from decrypting future content and prevent joining
members from decrypting previous content. Some of these methods
might also be applicable to managing family domain keys.

5.2 Family Domain Example
In the case of “Family Domain” content management, a consumer
will contact a content provider and purchase a song for his domain.
The purchase transaction protocol will be the same as for buying
content locked to a single device. However, the DRM certificate
would actually be a domain certificate, which contains the domain
public key. Now, when the content provider encrypts the content key
CEK, any device in the domain (i.e., all devices with the same
KdPri) will have the same rights to the content. Any device in the
domain that receives this content will be able to render it. The main
difference is that the license will lock the content to a domain rather
than a device.

6. EXAMPLE USE CASES
In this section we examine four important scenarios that show how
the components in our DRM system might interact with each other.
We look at examples of enrolling a device into a domain, buying
new content, rendering content, and sending a friend some content.

6.1 Enrollment of Device into a Family Domain
When a consumer wants to create a domain of devices, the
procedure can be very simple. For example, a device can be added
to a domain by registering it with the DA using the following steps:

1. The consumer activates the domain enrollment application,
which initiates contact with the DA.

2. The phone and DA establish a SAC and the device identifies
itself to the DA.

3. The consumer indicates whether he wants to form a new
domain or add the device to an existing domain.

35

4. The DA sends a new or an existing (in the case of joining an
existing domain) KdPri and DRMCert to the phone.

5. The phone securely installs the KdPri into its access-
controlled database.

To ensure that the domain concept is not abused, the DA will
enforce the policy that only a limited number of devices are allowed
in each domain. Also, the DA must authenticate the phone’s
UnitCert to guard against unauthorized phones from joining a
domain.

6.2 Over-the-Air Content Acquisition
A user can shop for content using his phone’s web browser. The
phone will connect to a Content Provider (CP) and display the
available items. The user will select items to purchase and the CP
and phone will enter a purchase transaction protocol, whereby the
purchased content is packaged and sent to the phone. The purchase
transaction steps are as follows:

1. The web browser makes a system call to the trusted
acquisition protocol.

2. To protect possible payment information and also bind
payment information to the phone’s identity, the UnitCert
and KuPri are used to establish a SAC.

3. The phone uses the SAC to send the phone’s DRMCert to
the CP.

4. The CP uses KdPub in the DRMCert to create a license file
that cryptographically binds the content and rights to the
phone’s KdPri.

5. The CP sends the license file and protected content file to
the phone.

Once the content and license arrive at the phone, they can be stored
in any sort of memory. There is no need to protect the content at this
time, since it is encrypted with CEK and CEK is encrypted with the
phone’s KdPub. Only trusted software can access KdPri and decrypt
CEK.

6.3 Content Rendering
A user can render DRM-protected content with an application that
interacts with the trusted DRM extensions. For example, to play a
song, the user will press the “play” button and the following
background steps will occur:

1. The top-level application gives the name of the
protected content and license files to the DRM
manager, which uses the phone’s root key to
authenticate the license.

2. The top-level application requests a “PLAY” action from the
DRM manager, which enforces the usage rules and, if
necessary, logs an event in the secure database.

3. The DRM manager invokes a trusted security agent to
decrypt the content key CEK using the KdPri.

4. The top-level application controls the rendering agents,
which decrypt, process, and send the content to an output
device.

5. If any of the above steps fail or the requested right is not
allowed, the content is not rendered and the top-level
application is notified.

6.4 Peer-to-Peer Superdistribution
The basic model for superdistribution, where content is passed along
more than once, was invented in 1983 by Ryoichi Mori and is
described in [25]. As was seen with Napster, peer-to-peer sharing
has the potential to propagate content extremely rapidly. Thus,
content providers, who are anxious to increase revenues, are very
interested in allowing secure peer-to-peer superdistribution in a
mobile phone environment.

In order to share a digital item, a user will use a top-level application
to select which item to share and where to send it. The user will then
press the “send” button. The two devices will connect and the
content will be delivered. We assume that the content is protected
(i.e., encrypted); therefore, the recipient device does not need to be
authenticated.

After a recipient device obtains the content and license, its user can
try to render the content by pressing the “play” button. Here are the
background steps that occur when the recipient of the new content
tries to play the content:

1. The top-level application gives the name of the protected
content and license files to the DRM manager, which uses
the phone’s root key to authenticate the license.

2. The top-level application requests a “PLAY” action from the
DRM manager. The manager determines that the recipient’s
credentials do not allow rendering. However, a short,
decrypted sample may be included with the content.

3. The user is asked whether she wants to hear the short sample
(if available) or purchase full rights to the content.

4. If the user wants to hear the sample, a trusted rendering
agent is used to render the sample.

5. If the user wants to buy the full rights, a purchase
transaction protocol is invoked and a new license is
delivered over the air.

One of the nice features of superdistribution in a mobile phone
system is that a free Bluetooth connection can be used for
distributing the large content files, while a more costly network
connection is used only for the smaller license files.

7. CLOSING REMARKS
Our DRM framework has been proposed for a mobile phone
environment, but it is also applicable to other devices, such as a
PDA, set-top box, automobile, or a PC. It would be particularly
advantageous to extend our family domain concepts to these other
devices because content could be more seamlessly shared amongst
all devices owned by a consumer.

In one future scenario, a consumer, say Alice, will be listening to her
car radio and hear a song she likes. She can just press a button on
the radio to purchase this song. Behind the scenes, Alice’s car radio
and the rest of the devices in her domain will be able to connect to a
service provider. This service provider will maintain Alice’s content
list and make it available to all of her family domain products. Later
in the day, when Alice is jogging in the park, she may want to listen
to her new song on a portable music player. She will simply scan her
content list for this new song and add it to her playlist. At the same
time Alice’s husband, say Bob, might be at home. He can listen to
DRM-protected songs on his home audio system. These songs could
be stored locally or streamed from his cable company to his set-top
box. If our family domain concept, plus our DRM framework, is

36

adopted into all of these devices, then scenarios like this will be
possible and more potential business opportunities will result.

7.1 Future Research
There are still many areas of research and development that need to
be completed before the DRM system described in this paper
becomes a reality. For example, there are many use cases that need
to be explored, the software blocks need to be more thoroughly
described, secure mechanisms to extend the OS need to be
developed, and hardware support to enable a trusted computing
platform needs to be deployed.
The subject of DRM is still divisive and confused. No one is certain
which standards will emerge or which methods will be accepted. In
a recent report on potential business models for digital music
distribution, Buhse [6] reports that it is still too early to determine
which business models will succeed, so he recommends that
companies prepare themselves for various scenarios. A DRM system
that is flexible enough for different business models, yet still
efficient for an embedded mobile phone system, is needed.
Our proposed approach offers a good path towards a secure and
consumer-friendly DRM system. Our security framework and
“Family Domain” DRM approach can benefit both content owners
and consumers.

8. ACKNOWLEDGMENTS
The authors would like to thank Ron Buskey and members of
Motorola Labs’ Security and Privacy Technology Lab for their
helpful comments and advice, including Larry Puhl for his work on
Family Domain, and Dean Vogler and Yi Li for helping to develop
prototype software.

9. REFERENCES
[1] 3GPP TS 23.057, “3rd Generation Partnership Project;

Technical Specification Group Terminals; Mobile Station
Application Execution Environment (MExE); Functional
description; Stage 2; (Release 4)”.

[2] 3GPP TS 23.140, “Multimedia Messaging Service (MMS);
Functional description; Stage 2”.

[3] “Advanced Encryption Standard (AES),” FIPS PUB 197,
Nov. 2001, Available at:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[4] S. Araki, “The Memory Stick,” IEEE Micro, vol. 20, issue 4,
July-Aug. 2000, pp. 40-46.

[5] P. Bhagwat, “Bluetooth: Technology for Short-Range
Wireless Apps,” IEEE Internet Computing, vol. 5, issue 3,
May-June 2001, pp. 96-103.

[6] Willms Buhse, “Implications of Digital Rights Management
for Online Music – A Business Perspective,” Proceedings of
the ACM Workshop in Security and Privacy in Digital Rights
Management, associated with ACM CCS ‘01, Philadelphia,
PA, November 2001.

[7] Business Software Alliance Report, Available:
http://www.bsa.org/.

[8] S. M. Cherry, “Making Music Pay,” IEEE Spectrum, vol. 38,
issue 10, Oct. 2001, pp. 41-6.

[9] F. Dahlgren, “Future Mobile Phones – Complex Design
Challenges from an Embedded Systems Perspective,”
Proceedings of the Seventh IEEE International Conference
on Engineering of Complex Computer Systems, 2001, pp. 92-
4.

[10] K. Enoki, “i-mode: The Mobile Internet Service of the 21st
Century,” IEEE International Solid-State Circuits
Conference (ISSCC), 2001, pp. 12-5.

[11] Joan Feigenbaum, Michael J. Freedman, Tomas Sander, and
Adam Shostack, “Privacy Engineering for DRM Systems,”
Proceedings of the ACM Workshop in Security and Privacy
in Digital Rights Management, associated with ACM CCS
‘01, Philadelphia, PA, November 2001.

[12] Xianjun Geng and A.B. Whinston, “Profiting from Value-
Added Wireless Services,” Computer, vol. 34, issue 8, Aug.
2001, pp. 87-9.

[13] GSM 02.09 (ETS 300 506), “Digital Cellular
Telecommunications System (Phase 2); Security Aspects,”
Aug. 2000.

[14] Anita Hamilton, “The Pirates of Prime Time,” Time.com,
Feb. 16, 2002, Available:
http://www.time.com/time/business/article/0,8599,203498,00.h
tml.

[15] F. Hartung and F. Ramme, “Digital Rights Management and
Watermarking of Multimedia Content for M-Commerce
Applications,” IEEE Communications Magazine, vol. 38,
issue 11, Nov. 2000, pp. 78-84.

[16] “International Federation of the Phonographic Industry
(IFPI) Music Piracy Report,” June 2002, Available:
 http://www.ifpi.org/site-content/library/piracy2002.pdf.

[17] International Intellectual Property Alliance, “USTR 2002
‘Special 301’ Decisions and Estimated Trade Losses Due to
Copyright Piracy,” April 30, 2002, Available:
http://www.iipa.com/pdf/2002_Apr30_USTRLOSSES.pdf.

[18] “JSR-000118 Mobile Information Device Profile Public
Review Draft Specification 2.0,” Available at:
http://java.sun.com.

[19] Jupiter Media Metrix – Press Release, “Subscriptions Will
Account For Almost Two-Thirds Of US Digital Music Sales
In 2006,” Jan. 15, 2002, Available:
http://www.jmm.com/xp/jmm/press/2002/pr_011502.xml.

[20] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of
Computation, vol. 48, 1987, pp. 203-9.

[21] David W. Kravitz, Kim-Ee Yeoh, and Nicol So, “Secure
Open Systems Protecting Privacy and Digital Services,”
Proceedings of the ACM Workshop in Security and Privacy
in Digital Rights Management, associated with ACM CCS
‘01, Philadelphia, PA, November 2001.

[22] Calvin K. M. Lam and Bernard C. Y. Tan, “The Internet is
Changing the Music Industry,” Communications of the ACM,
vol. 44, issue 8, August 2001, pp. 62-8.

[23] B.M. Macq and J.-J. Quisquater, “Cryptology for Digital TV
Broadcasting,” Proceedings of the IEEE , vol. 83, issue 6 ,
June 1995, pp. 944-57.

37

[24] Anna Wilde Mathews, Martin Peers and Nick Wingfield,
“Music Industry Finally Online – But Listeners Stay Away in
Droves,” Wall Street Journal, May 7, 2002.

[25] Ryoichi Mori and Masaji Kawahara, “Superdistribution: The
Concept and the Architecture,” The Transactions of the
IEICE, vol. E 73, no. 7, July 1990.

[26] Walter S Mossberg, “Sony’s Digital Music Clip is Cool, but
Treats Users Like Criminals,” Wall Street Journal, March
2nd, 2000.

[27] M.W. Oliphant, “The Mobile Phone Meets the Internet,”
IEEE Spectrum, vol. 36, issue 8, Aug. 1999, pp. 20-8.

[28] Benny Pinkas, “Efficient State Updates for Key
Management,” Proceedings of the ACM Workshop in
Security and Privacy in Digital Rights Management,
associated with ACM CCS ‘01, Philadelphia, PA, November
2001.

[29] “Piracy Blamed for CD Sales Slump,” BBC News, Feb. 26,
2002, Available:
http://news.bbc.co.uk/hi/english/entertainment/new_media/n
ewsid_1841000/1841768.stm

[30] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key Crypto-
systems,” Comm. ACM, vol. 21, 1978, pp. 120-126.

[31] Bill Rosenblatt, Bill Trippe, and Stephen Mooney, “Digital
Rights Management: Technology and Business,” M&T
Books, New York, New York, 2002, pp. 62.

[32] Thomas Sander, “Golden Times for Digital Rights
Management?,” Financial Cryptography : 5th International
Conference, FC 2001, Grand Cayman, British West Indies,
February 2001, pp. 64-74.

[33] P.B. Schneck, “Persistent Access Control to Prevent Piracy
of Digital Information,” Proceedings of the IEEE, vol. 87
issue 7, July 1999, pp. 1239-50.

[34] Secure Digital Music Initiative (SDMI), “SDMI Portable
Device Specification,” Part 1, ver. 1.0, 1999.

[35] “Secure Hash Standard (SHS),” FIPS PUB 180-1, April
1995, Available at: http://www.itl.nist.gov/fipspubs/fip180-
1.htm.

[36] See http://odrl.net.
[37] See: http://www.gnutella.com/.
[38] See http://www.keitaide-music.org.
[39] See: http://www.musiccity.com/.
[40] See: http://www.openmobilealliance.org/.
[41] See http://www.xrml.org.
[42] Mark Stefik, “Letting Loose the Light: Igniting Commerce in

Electronic Publication,” in Internet Dreams, Mark Stefik ed.,
MIT Press, 1997, pp. 219-254.

[43] R Stern, “Napster: A Walking Copyright Infringement?”
IEEE Micro, vol. 20 issue 6, Nov.-Dec. 2000, pp. 4-5, 95.

[44] Wireless Application Protocol, Available:
http://www.wapforum.org/.

38

